
Parallel Hybrid Computing
F. Bodin, CAPS Entreprise

Introduction

  Main stream applications will rely on new
multicore / manycore architectures
•  It is about performance not parallelism

  Various heterogeneous hardware
•  General purpose cores
•  Application specific cores – GPU (HWA)

  HPC and embedded applications are increasingly
sharing characteristics

OpenGPU, June 2009

Manycore Architectures
  General purpose cores

•  Share a main memory
•  Core ISA provides fast

SIMD instructions

  Streaming engines / DSP / FPGA
•  Application specific architectures

(“narrow band”)
•  Vector/SIMD
•  Can be extremely fast

  Hundreds of GigaOps
•  But not easy to take advantage of
•  One platform type cannot

satisfy everyone

  Operation/Watt is the efficiency scale
•  e.g. one rack SGI ICE Harpertown : 64 CPU nodes (22 kW) vs

one rack SGI ICE GPGPU : 8 Tesla S1070 (32 GPUs) + 16 CPU
nodes (12 kW)

Main
Memory

Application
data

General
Purpose
Processor
Cores

HWA

Application
data

Stream cores

Upload
remote
data

Download
remote data

Remote
Procedure call

OpenGPU, June 2009

Overview of the Presentation
1.  GPUs Programming

2.  CUDA

3.  OpenCL

4.  Miscellaneous Environments

5.  HMPP Overview

6.  High Level GPU Code Generation

OpenGPU, June 2009

GPUs Programming

OpenGPU, June 2009

Introduction
  GPUs are heavily pipelined and parallel

•  Share many characteristics with vector machines

  Stream programming is well suited
•  But memory hierarchy is exposed

  Require to rethink the computation organization/
algorithm

  See GPGPU (http://gpgpu.org)

OpenGPU, June 2009

Stream Computing

  A similar computation is performed on a
collection of data (stream)
•  There is no data dependence between the

computation on different stream elements

OpenGPU, June 2009

A Few Stream Languages

  Brook+

•  Mostly AMD

  CUDA Nvidia

•  NVIDIA Only

  RapidMind

•  Cell, AMD, …

  OpenCL

OpenGPU, June 2009

CUDA

OpenGPU, June 2009

CUDA Overview

  “Compute Unified Device Architecture”

  C base language but with syntax and semantic
extensions

  GPU is a coprocessor to a host (CPU)

  Make use of data parallelism thanks to the
massively parallel GPU architecture

OpenGPU, June 2009

CUDA Grid and Blocks
  GPUs need 1000s of threads to be efficient

•  Highly pipeline
•  Highly parallel

  ~SIMD

  Many
memories

Block id

Thread id in block

OpenGPU, June 2009

CUDA (1)
#include <stdio.h>
#include <cutil.h>
__global__
void simplefunc(float *v1, float *v2, float *v3) {
 int i = blockIdx.x * 100 + threadIdx.x;
 v1[i] = v2[i] * v3[i];
}

int main(int argc, char **argv) {
 unsigned int n = 400;
 float *t1 = NULL;float *t2 = NULL; float *t3 = NULL;
 unsigned int i, j, k, seed = 2, iter = 3;
 /* create the CUDA grid 4x1 */
 dim3 grid(4,1);
 /* create 100x1 threads per grid element */
 dim3 thread(100,1);

 t1 = (float *) calloc(n*iter, sizeof(float));
 t2 = (float *) calloc(n*iter, sizeof(float));
 t3 = (float *) calloc(n*iter, sizeof(float));

 printf("parameters: seed=%d, iter=%d, n=%d\n", seed, iter, n);

OpenGPU, June 2009

CUDA (2)

 /* initialize CUDA device */
 CUT_DEVICE_INIT()
 …
 /* allocate arrays on device */
 float *gpu_t1 = NULL;
 float *gpu_t2 = NULL;
 float *gpu_t3 = NULL;
 cudaMalloc((void**) &gpu_t1, n*sizeof(float));
 cudaMalloc((void**) &gpu_t2, n*sizeof(float));
 cudaMalloc((void**) &gpu_t3, n*sizeof(float));
 for (k = 0 ; k < iter ; k++) {
 /* copy data on gpu */
 cudaMemcpy(gpu_t2,&(t2[k*n]), n*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(gpu_t3,&(t3[k*n]), n*sizeof(float), cudaMemcpyHostToDevice);
 simplefunc<<<grid,thread>>>(gpu_t1,gpu_t2,gpu_t3);
 /* get back data from gpu */
 cudaMemcpy(&(t1[k*n]),gpu_t1, n*sizeof(float), cudaMemcpyDeviceToHost);
 }

 …
 return 0;
}

OpenGPU, June 2009

OpenCL

OpenGPU, June 2009

OpenCL Overview

  Open Computing Language
•  C-based cross-platform programming interface
•  Subset of ISO C99 with language extensions
•  Data- and task- parallel compute model

  Host-Compute Devices (GPUs) model

  Platform layer API and runtime API
•  Hardware abstraction layer, …
•  Manage resources

OpenGPU, June 2009

OpenCL Memory Hierarchy

From Aaftab Munshi’s talk at Siggraph2008
OpenGPU, June 2009

Platform Layer API& Runtime API

  Command queues
•  Kernel execution commands
•  Memory commands (transfer or mapping)
•  Synchronization

  Context
•  Manages the states

  Platform Layer
•  Querying devices
•  Creating contexts

OpenGPU, June 2009

Data-Parallelism in OpenCL
  A kernel is executed by the work-items

OpenGPU, June 2009

// OpenCL Kernel Function for element by element vector addition

__kernel void VectorAdd(__global const float8* a, __global const float8* b, __global float8* c)

{

 // get oct-float index into global data array

 int iGID = get_global_id(0);

 // read inputs into registers

 float8 f8InA = a[iGID];

 float8 f8InB = b[iGID];

 float8 f8Out = (float8)0.0f;

 // add the vector elements

 f8Out.s0 = f8InA.s0 + f8InB.s0;

 f8Out.s1 = f8InA.s1 + f8InB.s1;

 f8Out.s2 = f8InA.s2 + f8InB.s2;

 f8Out.s3 = f8InA.s3 + f8InB.s3;

 f8Out.s4 = f8InA.s4 + f8InB.s4;

 f8Out.s5 = f8InA.s5 + f8InB.s5;

 f8Out.s6 = f8InA.s6 + f8InB.s6;

 f8Out.s7 = f8InA.s7 + f8InB.s7;

 // write back out to GMEM

 c[get_global_id(0)] = f8Out;

}

Miscellaneous 
Environments

OpenGPU, June 2009

Brook+

kernel voidsum(float a<>, float b<>, out float c<>) {
 c = a + b;
 }
int main(int argc, char** argv) {
 int i, j;
 float a<10, 10>, b<10, 10>, c<10, 10>;
 float input_a[10][10],input_b[10][10], input_c[10][10];
 for(i=0; i<10; i++) {
 for(j=0; j<10; j++) {
 input_a[i][j] = (float) i;
 input_b[i][j] = (float) j;
 }
 }
 streamRead(a, input_a);
 streamRead(b, input_b);
 sum(a, b, c);
 streamWrite(c, input_c);
 ...
}

OpenGPU, June 2009

RapidMind
  Based on C++

•  Runtime + JIT
•  Internal data parallel language

From RapidMind

OpenGPU, June 2009

HMPP

OpenGPU, June 2009

Introduction

  Hybrid Multicore Parallel Programming (HMPP)

•  Focus on programming multicore nodes, not on
dealing with large scale parallelism

  Directives based programming environment

  Centered on the codelet / pure function concept

  Focus on CPU – GPU communications
optimizations

  Complementary to OpenMP and MPI

OpenGPU, June 2009

Directives Based Approach for
Hardware Accelerators (HWA)

  Do not require a new programming language

•  And can be applied to many based languages

  Already state of the art approach (e.g. OpenMP)

  Keep incremental development possible

  Avoid exit cost

OpenGPU, June 2009

What is Missing in OpenMP for HWA

  Remote Procedure Call (RPC) on a HWA
•  Code generation for GPU, …
•  Hardware resource management

  Dealing with non shared address space
•  Explicit communications management to optimize the

data transfers between main the CPU and the HWA

OpenGPU, June 2009

HMPP1.5 Simple Example
#pragma hmpp sgemmlabel codelet, target=CUDA, args[vout].io=inout
extern void sgemm(int m, int n, int k, float alpha,
 const float vin1[n][n], const float vin2[n][n],
 float beta, float vout[n][n]);

int main(int argc, char **argv) {
…
 for(j = 0 ; j < 2 ; j++) {
#pragma hmpp sgemmlabel callsite
 sgemm(size, size, size, alpha, vin1, vin2, beta, vout);
 }

#pragma hmpp label codelet, target=CUDA:BROOK, args[v1].io=out
#pragma hmpp label2 codelet, target=SSE, args[v1].io=out, cond=“n<800“
void MyCodelet(int n, float v1[n], float v2[n], float v3[n])
{ int i;
 for (i = 0 ; i < n ; i++) {
 v1[i] = v2[i] + v3[i];
 }
}

OpenGPU, June 2009

Group of Codelets (HMPP 2.0)

OpenGPU, June 2009

•  Several callsites
grouped in a sequence
corresponding to a
given device

  Memory allocated for
all arguments of all
codelets

  Allow for resident data
but no consistency
management

Optimizing Communications

  Exploit two properties
•  Communication / computation overlap
•  Temporal locality of RPC parameters

  Various techniques
•  Advancedload and Delegatedstore
•  Constant parameter
•  Resident data
•  Actual argument mapping

OpenGPU, June 2009

Advancedload Directive

  Avoid reloading constant data

t2 is not reloaded at each loop iteration

int main(int argc, char **argv) {
…
#pragma hmpp simple advancedload, args[v2], const
 for (j=0; j<n; j++){
#pragma hmpp simple callsite, args[v2].advancedload=true
 simplefunc1(n,t1[j], t2, t3[j], alpha);
 }
#pragma hmpp label release
…
}

OpenGPU, June 2009

#pragma hmpp <mygp> group, target=CUDA
#pragma hmpp <mygp> map, args[f1::inm; f2::inm]

#pragma hmpp <mygp> f1 codelet, args[outv].io=inout
static void matvec1(int sn, int sm,

 float inv[sn], float inm[sn][sm], float outv[sm])
{
 ...
}
#pragma hmpp <mygp> f2 codelet, args[v2].io=inout
static void otherfunc2(int sn, int sm,

 float v2[sn], float inm[sn][sm])
{
 ...
}

Actual Argument Mapping
  Allocate arguments of various codelets to the same

memory space
  Allow to exploit reuses of argument to reduce

communications
  Close to equivalence in Fortran

30
OpenGPU, June 2009

Arguments share
the same space
on the HWA

High Level GPU 
Code Generation

OpenGPU, June 2009

Introduction

  HMPP allows direct programming of GPU in C and
Fortran

  GPU Fortran/C code tuning similar to CPU tuning
code but strategy differs a lot

  Fortran/C coding easier and does not require to
learn all the intricacies of GPUs specific languages

  How to deal with multiple code/binary versions

•  Rollback CPU codes must be optimized too

OpenGPU, June 2009

Tuning GPU Codes

  GPU micro-architectures impact heavily on
tuning

  Performance difference between bad and right
may be huge

  Not exactly the usual tricks
•  e.g. Thread conscious optimizations
•  e.g. Memory coalescing important

OpenGPU, June 2009

Heterogeneous Tuning Issue Example
#pragma hmpp astex_codelet__1 codelet &

#pragma hmpp astex_codelet__1 , args[c].io=in &

#pragma hmpp astex_codelet__1 , args[v].io=inout &

#pragma hmpp astex_codelet__1 , args[u].io=inout &

#pragma hmpp astex_codelet__1 , target=CUDA &

#pragma hmpp astex_codelet__1 , version=1.4.0

void astex_codelet__1(float u[256][256][256], float v[256][256][256], float c[256][256][256],

 const int K, const float x2){

 astex_thread_begin:{

 for (int it = 0 ; it < K ; ++it){

 for (int i2 = 1 ; i2 < 256 - 1 ; ++i2){

 for (int i3 = 1 ; i3 < 256 - 1 ; ++i3){

 for (int i1 = 1 ; i1 < 256 - 1 ; ++i1){

 float coeff = c[i3][i2][i1] * c[i3][i2][i1] * x2;

 float sum = u[i3][i2][i1 + 1] + u[i3][i2][i1 - 1];

 sum += u[i3][i2 + 1][i1] + u[i3][i2 - 1][i1];

 sum += u[i3 + 1][i2][i1] + u[i3 - 1][i2][i1];

 v[i3][i2][i1] = (2. - 6. * coeff) * u[i3][i2][i1] + coeff * sum - v[i3][i2][i1];

 }

 }

 }

 for (int i2 = 1 ; i2 < 256 - 1 ; ++i2){

 for (int i3 = 1 ; i3 < 256 - 1 ; ++i3){

 for (int i1 = 1 ; i1 < 256 - 1 ; ++i1{

 }astex_thread_end:;

}

Need interchange

If aims at NVIDIA GPU

OpenGPU, June 2009

Examples of Kernel Tuning Rules

  Rule 1: Create a sufficient amount of independent tasks (i.e. some 1D or
2D loop nests with hundreds or even thousands of independent iterations in
each dimension).

  Rule 2: Maximize the coalescing of memory accesses (i.e. the threads in a
given half-warp should have a good spatial locality).

  Rule 3: Reduce the number of accesses to the global memory.
  Rule 4: Use aligned coalescent memory accesses when possible.
  Rule 5: Limit the resources (registers, shared memory, ...) used by each

thread to allow more warps to be executed in parallel on each
multiprocessor.

  Rule 6: Increase the amount of concurrent memory accesses to maximize
the use of the memory bus.

  Rule 7: Tune the gridification and the CUDA block size. This can affect in
good or in bad any of the rules above.

OpenGPU, June 2009

Conclusion
  Multicore/Manycore ubiquity is going to have a large

impact on software industry
•  New applications but many new issues
•  It is not GPU versus CPU but how to combine them efficiently

  Will one parallel model fit all?
•  Surely not but multi languages programming should be avoided
•  Directive based programming is a safe approach
•  Ideally OpenMP will be extended to HWA

  Toward Adaptative Parallel Programming
•  Compiler alone cannot solve it
•  Compiler must interact with the runtime environment
•  Programming must help expressing global strategies / patterns
•  Compiler as provider of basic implementations
•  Offline-Online compilation has to be revisited

OpenGPU, June 2009

