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Introduction 

  Main stream applications will rely on new 
multicore / manycore architectures  
•  It is about performance not parallelism 

  Various heterogeneous hardware  
•  General purpose cores 
•  Application specific cores – GPU (HWA) 

  HPC and embedded applications are increasingly 
sharing characteristics 
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Manycore Architectures 
  General purpose cores 

•  Share a main memory 
•  Core ISA provides fast  

SIMD instructions 

  Streaming engines / DSP / FPGA 
•  Application specific architectures  

(“narrow band”) 
•  Vector/SIMD 
•  Can be extremely fast 

  Hundreds of GigaOps  
•  But not easy to take advantage of 
•  One platform type cannot  

satisfy everyone 

  Operation/Watt is the efficiency scale 
•  e.g. one rack SGI ICE Harpertown : 64 CPU nodes (22 kW) vs 

one rack SGI ICE GPGPU : 8 Tesla S1070 (32 GPUs) + 16 CPU 
nodes (12 kW)  
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Overview of the Presentation 
1.  GPUs Programming 

2.  CUDA 

3.  OpenCL 

4.  Miscellaneous Environments 

5.  HMPP Overview 

6.  High Level GPU Code Generation 
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GPUs Programming


OpenGPU, June 2009 



Introduction 
  GPUs are heavily pipelined and parallel 

•  Share many characteristics with vector machines 

  Stream programming is well suited 
•  But memory hierarchy is exposed 

  Require to rethink the computation organization/
algorithm 

  See GPGPU (http://gpgpu.org) 
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Stream Computing 

  A similar computation is performed on a 
collection of data (stream) 
•  There is no data dependence between the 

computation on different stream elements 
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A Few Stream Languages 

  Brook+  

•  Mostly AMD 

  CUDA Nvidia 

•  NVIDIA Only 

  RapidMind 

•  Cell, AMD, … 

  OpenCL 
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CUDA
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CUDA Overview 

  “Compute Unified Device Architecture” 

  C base language but with syntax and semantic 
extensions 

  GPU is a coprocessor to a host (CPU) 

  Make use of data parallelism thanks to the 
massively parallel GPU architecture 
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CUDA Grid and Blocks 
  GPUs need 1000s of threads to be efficient 

•  Highly pipeline 
•  Highly parallel 

  ~SIMD 

  Many 
memories 

Block id

Thread id in block
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CUDA (1) 
#include <stdio.h> 
#include <cutil.h> 
__global__ 
void simplefunc(float *v1, float *v2, float *v3) { 
   int i = blockIdx.x * 100 + threadIdx.x; 
   v1[i] = v2[i] * v3[i]; 
} 

int main(int argc, char **argv) { 
  unsigned int n = 400; 
  float *t1 = NULL;float *t2 = NULL; float *t3 = NULL; 
  unsigned int i, j, k, seed = 2, iter = 3; 
  /* create the CUDA grid 4x1 */ 
  dim3 grid(4,1); 
  /* create 100x1 threads per grid element */ 
  dim3 thread(100,1); 

  t1 = (float *) calloc(n*iter, sizeof(float)); 
  t2 = (float *) calloc(n*iter, sizeof(float)); 
  t3 = (float *) calloc(n*iter, sizeof(float)); 

  printf("parameters: seed=%d, iter=%d, n=%d\n", seed, iter, n); 
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CUDA (2) 

  /* initialize CUDA device */ 
  CUT_DEVICE_INIT() 
  … 
  /* allocate arrays on device */ 
  float *gpu_t1 = NULL; 
  float *gpu_t2 = NULL; 
  float *gpu_t3 = NULL; 
  cudaMalloc((void**) &gpu_t1, n*sizeof(float)); 
  cudaMalloc((void**) &gpu_t2, n*sizeof(float)); 
  cudaMalloc((void**) &gpu_t3, n*sizeof(float)); 
 for (k = 0 ; k < iter ; k++) { 
    /* copy data on gpu */ 
    cudaMemcpy(gpu_t2,&(t2[k*n]), n*sizeof(float), cudaMemcpyHostToDevice); 
    cudaMemcpy(gpu_t3,&(t3[k*n]), n*sizeof(float), cudaMemcpyHostToDevice); 
    simplefunc<<<grid,thread>>>(gpu_t1,gpu_t2,gpu_t3); 
    /* get back data from gpu */ 
    cudaMemcpy(&(t1[k*n]),gpu_t1, n*sizeof(float), cudaMemcpyDeviceToHost); 
  } 

  … 
  return 0; 
} 

OpenGPU, June 2009 



OpenCL
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OpenCL Overview 

  Open Computing Language 
•  C-based cross-platform programming interface 
•  Subset of ISO C99 with language extensions 
•  Data- and task- parallel compute model 

  Host-Compute Devices (GPUs) model 

  Platform layer API and runtime API 
•  Hardware abstraction layer, … 
•  Manage resources 

OpenGPU, June 2009 



OpenCL Memory Hierarchy 

From Aaftab Munshi’s talk at Siggraph2008 
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Platform Layer API& Runtime API 

  Command queues 
•  Kernel execution commands 
•  Memory commands (transfer or mapping) 
•  Synchronization 

  Context 
•  Manages the states 

  Platform Layer 
•  Querying devices 
•  Creating contexts 
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Data-Parallelism in OpenCL 
  A kernel is executed by the work-items 
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// OpenCL Kernel Function for element by element vector addition

__kernel void VectorAdd(__global const float8* a, __global const float8* b, __global float8* c)

{

    // get oct-float index into global data array

    int iGID = get_global_id(0);


    // read inputs into registers

    float8 f8InA = a[iGID];

    float8 f8InB = b[iGID];

    float8 f8Out = (float8)0.0f;


    // add the vector elements

    f8Out.s0 = f8InA.s0 + f8InB.s0;

    f8Out.s1 = f8InA.s1 + f8InB.s1;

    f8Out.s2 = f8InA.s2 + f8InB.s2;

    f8Out.s3 = f8InA.s3 + f8InB.s3;

    f8Out.s4 = f8InA.s4 + f8InB.s4;

    f8Out.s5 = f8InA.s5 + f8InB.s5;

    f8Out.s6 = f8InA.s6 + f8InB.s6;

    f8Out.s7 = f8InA.s7 + f8InB.s7;


    // write back out to GMEM

    c[get_global_id(0)] = f8Out;

}




Miscellaneous 
Environments
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Brook+ 

kernel voidsum(float a<>, float b<>, out float c<>) {  
   c = a + b; 
 }  
int main(int argc, char** argv) { 
   int i, j;  
   float a<10, 10>, b<10, 10>, c<10, 10>;  
   float input_a[10][10],input_b[10][10], input_c[10][10];  
  for(i=0; i<10; i++) {  
     for(j=0; j<10; j++) { 
      input_a[i][j] = (float) i;  
      input_b[i][j] = (float) j; 
    }  
  } 
 streamRead(a, input_a);  
 streamRead(b, input_b);  
 sum(a, b, c);  
 streamWrite(c, input_c);  
 ...  
}  
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RapidMind 
  Based on C++ 

•  Runtime + JIT 
•  Internal data parallel language 

From RapidMind 
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HMPP
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Introduction 

  Hybrid Multicore Parallel Programming (HMPP) 

•  Focus on programming multicore nodes, not on 
dealing with large scale parallelism 

  Directives based programming environment 

  Centered on the codelet / pure function concept 

  Focus on CPU – GPU communications 
optimizations 

  Complementary to OpenMP and MPI 
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Directives Based Approach for  
Hardware Accelerators (HWA) 

  Do not require a new programming language 

•  And can be applied to many based languages 

  Already state of the art approach (e.g. OpenMP) 

  Keep incremental development possible 

  Avoid exit cost 
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What is Missing in OpenMP for HWA 

  Remote Procedure Call (RPC) on a HWA 
•  Code generation for GPU, … 
•  Hardware resource management 

  Dealing with non shared address space 
•  Explicit communications management to optimize the 

data transfers between main the CPU and the HWA 
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HMPP1.5 Simple Example 
#pragma hmpp sgemmlabel codelet, target=CUDA, args[vout].io=inout 
extern void sgemm( int m, int n, int k, float alpha,  
                   const float vin1[n][n], const float vin2[n][n],  
                   float beta, float vout[n][n] ); 

int main(int argc, char **argv) { 
… 
 for( j = 0 ; j < 2 ; j++ ) {       
#pragma hmpp sgemmlabel callsite 
    sgemm( size, size, size, alpha, vin1, vin2, beta, vout );  
 } 

#pragma hmpp label codelet, target=CUDA:BROOK, args[v1].io=out 
#pragma hmpp label2 codelet, target=SSE, args[v1].io=out, cond=“n<800“ 
void MyCodelet(int n, float v1[n],  float v2[n], float v3[n])  
{ int i; 
  for (i = 0 ; i < n ; i++) { 
    v1[i] = v2[i] + v3[i]; 
  } 
} 
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Group of Codelets (HMPP 2.0) 

OpenGPU, June 2009 

•  Several callsites 
grouped in a sequence 
corresponding to a 
given device 

  Memory allocated for 
all arguments of all 
codelets 

  Allow for resident data 
but no consistency 
management 



Optimizing Communications 

  Exploit two properties 
•  Communication / computation overlap 
•  Temporal locality of RPC parameters 

  Various techniques 
•  Advancedload and Delegatedstore 
•  Constant parameter 
•  Resident data 
•  Actual argument mapping 
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Advancedload Directive 

  Avoid reloading constant data 

t2 is not reloaded at each loop iteration


int main(int argc, char **argv) { 
… 
#pragma hmpp simple advancedload, args[v2], const 
  for (j=0; j<n; j++){ 
#pragma hmpp simple callsite, args[v2].advancedload=true 
    simplefunc1(n,t1[j], t2, t3[j],  alpha); 
   } 
#pragma hmpp label release 
… 
} 
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#pragma hmpp <mygp> group, target=CUDA 
#pragma hmpp <mygp> map,   args[f1::inm; f2::inm] 

#pragma hmpp <mygp> f1 codelet, args[outv].io=inout 
static void matvec1(int sn, int sm, 

   float inv[sn], float inm[sn][sm], float outv[sm]) 
{ 
  ... 
} 
#pragma hmpp <mygp> f2 codelet, args[v2].io=inout 
static void otherfunc2(int sn, int sm, 

   float v2[sn], float inm[sn][sm]) 
{ 
  ... 
} 

Actual Argument Mapping 
  Allocate arguments of various codelets to the same 

memory space 
  Allow to exploit reuses of argument to reduce 

communications 
  Close to equivalence in Fortran 

30
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Arguments share 
the same space 
on the HWA




High Level GPU 
Code Generation
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Introduction 

  HMPP allows direct programming of GPU in C and 
Fortran 

  GPU Fortran/C code tuning similar to CPU tuning 
code but strategy differs a lot 

  Fortran/C coding easier and does not require to 
learn all the intricacies of GPUs specific languages 

  How to deal with multiple code/binary versions 

•  Rollback CPU codes must be optimized too 
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Tuning GPU Codes 

  GPU micro-architectures impact heavily on 
tuning 

  Performance difference between bad and right 
may be huge 

  Not exactly the usual tricks 
•  e.g. Thread conscious optimizations 
•  e.g. Memory coalescing important 
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Heterogeneous Tuning Issue Example  
#pragma hmpp astex_codelet__1 codelet &

#pragma hmpp astex_codelet__1 , args[c].io=in &

#pragma hmpp astex_codelet__1 , args[v].io=inout &

#pragma hmpp astex_codelet__1 , args[u].io=inout &

#pragma hmpp astex_codelet__1 , target=CUDA &

#pragma hmpp astex_codelet__1 , version=1.4.0

void astex_codelet__1(float u[256][256][256], float v[256][256][256], float c[256][256][256], 

                      const int K, const float x2){

 astex_thread_begin:{   

  for (int it = 0 ; it < K ; ++it){       

    for (int i2 = 1 ; i2 < 256 - 1 ; ++i2){  

      for (int i3 = 1 ; i3 < 256 - 1 ; ++i3){         

        for (int i1 = 1 ; i1 < 256 - 1 ; ++i1){

          float  coeff = c[i3][i2][i1] * c[i3][i2][i1] * x2;

          float  sum = u[i3][i2][i1 + 1] + u[i3][i2][i1 - 1];

          sum += u[i3][i2 + 1][i1] + u[i3][i2 - 1][i1];

          sum += u[i3 + 1][i2][i1] + u[i3 - 1][i2][i1];

          v[i3][i2][i1] = (2. - 6. * coeff) * u[i3][i2][i1] + coeff * sum - v[i3][i2][i1];

        }             

      }    

    }       

    for (int i2 = 1 ; i2 < 256 - 1 ; ++i2){

      for (int i3 = 1 ; i3 < 256 - 1 ; ++i3){

        for (int i1 = 1 ; i1 < 256 - 1 ; ++i1{

        

        . . . . .           

 }astex_thread_end:;

}


Need interchange

If aims at NVIDIA GPU


OpenGPU, June 2009 



Examples of Kernel Tuning Rules 

  Rule 1:  Create a sufficient amount of independent tasks (i.e. some 1D or 
2D loop nests with hundreds or even thousands of independent iterations in 
each dimension).  

  Rule 2: Maximize the coalescing of memory accesses (i.e. the threads in a 
given half-warp should have a good spatial locality).  

  Rule 3: Reduce the number of accesses to the global memory.  
  Rule 4: Use aligned coalescent memory accesses when possible.  
  Rule 5: Limit the resources (registers, shared memory, ...) used by each 

thread to allow more warps to be executed in parallel on each 
multiprocessor.  

  Rule 6: Increase the amount of concurrent memory accesses to maximize 
the use of the memory bus.  

  Rule 7: Tune the gridification and the CUDA block size. This can affect in 
good or in bad any of the rules above.  
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Conclusion 
  Multicore/Manycore ubiquity is going to have a large 

impact on software industry 
•  New applications but many new issues 
•  It is not GPU versus CPU but how to combine them efficiently 

  Will one parallel model fit all? 
•  Surely not but multi languages programming should be avoided 
•  Directive based programming is a safe approach 
•  Ideally OpenMP will be extended to HWA 

  Toward Adaptative Parallel Programming 
•  Compiler alone cannot solve it 
•  Compiler must interact with the runtime environment 
•  Programming must help expressing global strategies / patterns 
•  Compiler as provider of basic implementations 
•  Offline-Online compilation has to be revisited 
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